08.11.2021 - Münster
Prof. Dr. Jörg Harnisch zeigt die Bestandteile eines
klassischen 3-Stoff-Betons: Zement, Gesteinskörner und Wasser. Foto:
Katharina Kipp / FH Münster
Bauingenieur/innen der FH Münster haben einen völlig neuen Beton zu entwickelt, der klimafreundlich und idealerweise CO2-neutral ist – und unter anderem aus den Feinanteilen des Betonrecyclats besteht. Denn damit stellte das Team um Prof. Dr. Jörg Harnisch ein CO2-optimiertes Bindemittel her, das die die Gesteinskörner im Beton zusammenklebt.
Immer mehr Bauwerke aus Beton sind in die Jahre gekommen und werden abgebrochen – übrig bleibt jede Menge Schutt. Dieser besteht aus verschiedenen Korngrößen, von sehr klein bis ganz grob. Alles, was im mittleren bis groben Segment liegt, lässt sich in der Baubranche derzeit gut weiterverarbeiten. Mit dem feinen Pulver im Betonrecyclat, das von der Konsistenz her an Mehl erinnert, gelingt das jedoch nicht ohne Weiteres.
Darüber hinaus gibt es eine weitere Herausforderung beim Einsatz von Beton als Massenbaustoff: Zement. Dieser wird neben der Gesteinskörnung, Wasser sowie Zusatzmitteln und -stoffen benötigt, um Beton herzustellen. Er verursacht dabei aber fünf bis acht Prozent der CO2-Emissionen weltweit.
Bauingenieur*innen der FH Münster hatten deshalb die Idee, einen völlig neuen Beton zu entwickeln, der klimafreundlich und idealerweise CO2-neutral ist – und unter anderem aus den Feinanteilen des Betonrecyclats besteht. Denn damit stellte das Team ein CO2-optimiertes Bindemittel her.
„Das Bindemittel klebt die Gesteinskörner im Beton zusammen. Normalerweise geschieht das mit Hilfe des Zementleims“, erklärt Prof. Dr. Jörg Harnisch. Zement besteht aus Kalk und Ton. In der Herstellung wird er bei bis zu 1.450 Grad gebrannt. Dabei stammt ein großer Teil der Energie nach wie vor aus fossilen Energieträgern – und das sorgt für einen erheblichen CO2-Ausstoß.
Aber nicht nur hier entsteht CO2. Wird Kalkstein bei 1.450 Grad Celsius gebrannt, wandelt dieser sich unter Abgabe von erheblichen CO2-Mengen zu Brandkalk um. Dieser Vorgang wird „entsäuern“ genannt, und der Anteil am Gesamtausstoß von CO2 beträgt rund 60 Prozent. Diese Menge wird also Brennstoffunabhängig bei den derzeit eingesetzten Rohstoffen immer erzeugt.
„Unser Ansatz ist es daher, Zement zu ersetzen. Wir verwenden Metakaolin, ein thermisch speziell aufbereiteter Ton, und das feine Pulver aus dem Betonrezcylat. Letzteres haben wir vom Betonwerk Rekers bekommen, dessen Betonrecylat aus der Produktion gut mit dem Recyclat von der Baustelle vergleichbar ist. Wir danken an dieser Stelle herzlich für die hervorragende Zusammenarbeit im Projekt.“
Metakaolin verbrauche in der Herstellung zwar immer noch Energie, allerdings deutlich weniger als beim Zement. Zudem „entsäuert“ Ton nicht wie Kalkstein, sodass der CO2-Ausstoß von dieser Seite auf ein Minimum gesenkt werden kann, so der Wissenschaftler. Statt Wasser arbeitet das Team mit einer hoch alkalischen Aktivatorlösung – das dickflüssige Natrium-Wasserglas.
„Dieser Prozess ist sehr komplex“, sagt Pia Gebken. „In dem Pulver gibt es amorphe Alumosilikate, die eine große chemische Reaktionsfreude besitzen. Wir lösen diese mit dem Wasserglas zunächst an. In einem zweiten Schritt verbinden sich die angelösten Elemente zu neuen, festen Strukturen. Dieser Vorgang wird auch als Polymerisation bezeichnet und ist vor allem in Zusammenhang mit Kunststoffen bekannt. Dadurch entsteht das neue Bindemittel, mit dem wir die Gesteinskörner zusammenkleben“, erklärt die wissenschaftliche Mitarbeiterin.
Drei Jahre lang haben die Bauingenieur*innen daran geforscht. Dabei entpuppte sich vor allem das richtige Verhältnis von Metakaolin und Rezyklat als große Herausforderung: ein zu hoher Anteil von Rezyklat führt dazu, dass die Fertigkeit nicht besonders hoch ist. Aber auch die Zusammensetzung der Aktivatorlösung spielt eine große Rolle und wurde in ausgiebigen Testreihen beleuchtet.
Die Prüfungen an Festmörtel und -beton hat Ingo Fenneker durchgeführt und begleitet: Er führte im Bautechnischen Zentrallabor der Hochschule Belastungstests in dreistelliger Anzahl durch. „Letztendlich ist es uns gelungen, funktionierende Betone zu entwickeln, die unter Baustellenbedingungen hergestellt werden können und eine technisch nutzbare Festigkeit aufweisen – Vorsicht ist aber bei dem Einsatz der alkalischen Lösung angesagt“, so Harnisch.
Besonders gut funktioniert Beton, der zu 75 Prozent aus Metakaolin und 25 Prozent aus Rezyklat besteht. „Dieser ist mit 30 Newton pro Quadratmillimeter belastbar, was einem normalen Beton im heutigen Hausbau entspricht“, sagt Fenneker. Die Fertigkeit sinkt leicht, wenn der Beton zu 50 Prozent aus Metakaolin und zu 50 Prozent aus Rezyklat besteht – ist aber immer noch sehr gut nutzbar.
Und die Folgen für die Umwelt sind deutlich: Normaler Beton erzeugt ein CO2-Äquivalent von über 200 Kilogramm pro Kubikmeter. Beton mit viel Metakaolin und weniger Rezyklat reduziert das um 42 Prozent, Beton mit mehr Rezyklat um 50 Prozent. Noch ein Vorteil: Die verbleibende Energie ist vornehmlich Prozessenergie, die in der Zukunft idealerweise aus regenerativen Quellen stammt. Dann wäre der neue Beton klimaneutral.
Fertig ist das Team damit aber noch nicht: Im nächsten Schritt will es untersuchen, wie dauerhaft der neue Beton ist – wie gut er also gegen Frost, Temperatur- und Feuchtebeanspruchung gewappnet ist. Und es gilt herausfinden, wie lange der Beton den darin verbauten Bewehrungsstahl sicher vor Korrosion schützt.
„Außerdem wollen wir einen Beton mit noch höherer Festigkeit entwickeln. Was wir jetzt schon erreicht haben, ist für uns ein großer Erfolg. Da steckt aber noch viel Potenzial drin, das wir ausschöpfen wollen. Irgendwann komplett klimaneutralen Beton zu produzieren, wäre großartig, denn ohne Beton bauen wird es auch in Zukunft nicht geben“, so Harnisch.
Die deutsche Bundesstiftung Umwelt (DBU) hat das kooperative Forschungsvorhaben mit der Firma REKERS aus Spelle mit insgesamt rund 120.000 Euro gefördert.
Quelle: FH Münster, Fotos: Katharina Kipp / FH Münster
Die Social Media Buttons oben sind datenschutzkonform und übermitteln beim Aufruf der Seite noch keine Daten an den jeweiligen Plattform-Betreiber. Dies geschieht erst beim Klick auf einen Social Media Button (Datenschutz).
Jetzt Newsletter abonnieren!
Sustainable Bavaria
Nachhaltig Planen und Bauen
Digitaltouren - Digitalforen
Netzwerk junge Ingenieure
Werde Ingenieur/in!
www.zukunft-ingenieur.de
Veranstaltungstipps
Einheitlicher Ansprechpartner
Berufsanerkennung
Professional recognition
Bayerische Ingenieurekammer-Bau
Körperschaft des öffentlichen Rechts
Schloßschmidstraße 3
80639 München